Футурология. Солнечный парус
Кратко о статье: Раньше извозчики кричали: «Но, пошла!», летчики — «От винта!», а Гагарин ограничился лаконичным: «Поехали!». Вполне возможно, что через каких-нибудь 20-30 лет космонавты будут оглашать радиоэфир «морскими» возгласами типа: «Поднять грот, убрать бом-брамсели!», ведь солнечный парус — дешевое, доступное, и очень эффективное средство перемещения в космосе, которое сейчас рассматривается как один из лучших способов путешествия человека на Марс. Все, что вы хотели бы узнать об этом — в новой статье «Поднять паруса!».

Поднять паруса!

Солнечный парус — путь к звездам

Все с детства знают, что то-то и то-то невозможно. Но всегда находится невежда, который этого не знает. Он-то и делает открытие.

Альберт Эйнштейн

14 Kb

Парус — простейшее устройство, сотни лет исправно служившее людям. Земля осваивалась именно под парусами. Но в конце 19 века они уступили место сначала паровым машинам, затем — дизельным двигателям, а позже на службу человеку встали космические ракеты и атомная энергия. Казалось бы, парусные корабли навсегда “уплыли” в область спорта, отдыха богачей, дорогих исторических фильмов и авантюрных морских романов.

Как говорил Рабинович в известном анекдоте: “Не дождетесь!”. Ведущие специалисты в области исследования космоса уже не один десяток лет серьезно обсуждают вопрос о применении солнечного паруса в космосе. Многие из нас слышали этот термин и примерно представляют себе принципы работы солнечного паруса. Но что такое солнечный парус при ближайшем рассмотрении? Действительно ли он эффективнее химических ракетных двигателей?

Автора!

Почти 400 лет назад выдающийся немецкий астроном Иоганн Кеплер (1571-1630), наблюдая кометы, установил, что их хвосты постоянно направлены в сторону, противоположную от Солнца. Трактат “О кометах”, опубликованный им в 1619 году, объяснял это явление воздействием солнечного света (идея по тем временам не только бредовая, но и откровенно опасная). Так или иначе, Кеплер был первым, кто предположил, что солнечный свет оказывает давление на хвосты комет.

64 Kb

Иоганн Кеплер — астроном и писатель-фантаст.

Интересно, что последней работой Кеплера, опубликованной уже после его смерти в 1634 году, был фантастический роман “Сон”, в котором описывались быт и нравы обитателей Луны — эндимионидов (змей, имевших толстую шкуру, которая предохраняла их от палящих лучей солнца).

На протяжении нескольких последующих столетий космосом интересовались лишь астрономы, шарлатаны и шизофреники, причем первые исследовали его чисто академически — лететь туда они не собирались, а остальные уж и подавно не могли придумать способа использовать солнечный свет для путешествий к другим планетам.

Теория давления света в рамках классической электродинамики была выдвинута Джеймсом Кларком Максвеллом в 1873 году, который связал это явление с передачей импульса электромагнитного поля веществу.

При нормальном падении света на поверхность твердого тела давление света определяется формулой p = S(1 — R)/c, где S — плотность потока энергии (интенсивность света), R — коэффициент отражения света от поверхности.

Так уж сложилось — западные ученые в наше время крайне неохотно вспоминают о том, что некоторые великие научные открытия были сделаны в России. Они совершенно не связывают изобретение радио с Поповым, а лампочка накаливания никак не ассоциируется у них с Лодыгиным. Однако все без исключения исследователи признают, что пионерами в области разработок космического паруса являются наши соотечественники.

11 Kb

Фридрих Цандер — малоизвестный гений космонавтики.

Так, давление света на твердые тела было впервые исследовано Петром Николаевичем Лебедевым (1866-1912) в 1899 году. В его опытах использовался вакуумированный (~10 в минус четвертой степени миллиметров ртутного столба) стеклянный сосуд, где на тонкой серебряной нити были подвешены коромысла крутильных весов с закрепленными на них тонкими дисками-крылышками из слюды (они-то и подвергались облучению). Именно Лебедев экспериментально подтвердил справедливость теории Максвелла о давлении света.

Солнечный парус как таковой был изобретен другим русским ученым — Фридрихом Артуровичем Цандером (1887 — 1933). Он впервые рассмотрел несколько конструкций этого устройства, наиболее целесообразная из которых была подробно описана им в 1924 году в неопубликованном варианте статьи “Перелеты на другие планеты”.

Солнечный парус, по замыслу ученого, должен был иметь площадь в 1 квадратный километр при толщине экрана 0,01 миллиметра и массу 300 килограммов. Парус должен был иметь центральную ось и некоторый набор силовых элементов, поддерживающих его форму. Цандер отмечал, что толщина экрана может быть еще меньше, так как Эдисону удалось изготовить никелевые листы толщиной 0,001 миллиметра и размером 3200 квадратных метров.

Ученый также попытался разработать основы теории движения космических аппаратов под солнечным парусом. Он считал целесообразным направлять на солнечный парус космического аппарата поток света, собранный вторым парусом, расположенным на некоторой промежуточной межпланетной станции. Эта его идея перекликается с современными предложениями об использовании для разгона космического аппарата искусственного лучистого (лазерного) ветра, обеспечивающего существенно большее давление на поверхность, чем солнечные лучи.

12 Kb

Лазер может толкать солнечный парус на огромные расстояния.

Цандер также принимал участие в создании первой советской жидкотопливной ракеты (она была испытана в 1933 году вскоре после его смерти), создал чертежи крылатой ракеты и впервые предложил выращивать на борту космического аппарата растения, чтобы обеспечивать космонавтов кислородом и едой. Именем Цандера назван кратер на луне, а Латвийская Академия Наук учредила ежегодный приз (по физике и математике) имени этого выдающегося ученого.

Это нтересно:
  • Кто изобрел парус, точно неизвестно. Однако 6000 лет назад египтяне уже уверенно пользовали прямой парус, плавая по Нилу.
  • Клипер “Проссейн”, построенный в начале 20 века гамбургской компанией “Лаэш”, имел самую большую в мире площадь парусов — 6500 кв. м.
  • Самые быстрые парусники в истории человечества — чайные клипера (конец 19 века) развивали скорость до 20 узлов (37 км/ч)
  • В теории космический парусник может разгоняться до 30% от скорости света и даже выше.
  • Давление солнечного света на орбите Земли составляет 9.12 µN/m2 (меньше веса муравья).
  • “Солнечный парус” появился во втором эпизоде “Звездных войн” (“Звездные войны 2: Атака клонов”) на корабле графа Дуку (он же Саруман, он же Кристофер Ли).
30 Kb 17 Kb

Английский клипер «Фермопилы» (1868) — самый быстрый парусник в мире.

Парусник злобного графа Дуку.

Что мы имеем?

Некоторые источники называют солнечный парус “световым” — чаще всего это происходит в тех случаях, когда в качестве источника света предлагается использовать не Солнце, а, например, лазер.

Принцип работы этого устройства прост до безобразия — космический корабль разворачивает большое полотно — парус, который либо отражает, либо поглощает (рассматриваются варианты и с черным парусом) фотоны света.

17 Kb

Раскрытие сегмента солнечного паруса (действующая модель).

На орбите Земли (1 астрономическая единица расстояния от Солнца) парус массой 0,8 г/м2 испытывает примерно такое же по силе воздействие солнечного света. Давление обратно пропорционально квадрату расстояния от Солнца. Заметим, что парус может быть гораздо тяжелее — и все равно он останется более-менее функциональным, хотя и не сможет самостоятельно раскрываться под действием солнечного ветра (придется разворачивать его механическим путем).

Главным неудобством солнечного паруса является то, что он может двигать корабль лишь в сторону от Солнца, а не к нему. Иногда высказывается мнение, что полет в направлении Солнца возможен, если идти галсами (здесь очевидна аналогия с зигзагообразным движением морского парусника против ветра). Изменяя угол наклона солнечного паруса относительно падающего на него света, можно легко управлять космическим кораблем, сколь угодно часто меняя его траекторию (удовольствие, недоступное для ракетных двигателей).

Основное и самое главное достоинство “парусного” способа перемещения в космическом пространстве — полное отсутствие топливных затрат. Альтернатив современным химическим ракетам на околоземном пространстве пока нет — они сравнительно дешевы и способны вывести на орбиту грузы в сотни тонн.

Однако когда речь заходит о межпланетных путешествиях, преимущества химических ракет заканчиваются. Они попросту не способны обеспечить кораблю постоянное ускорение (а, следовательно, сообщить ему как можно более высокую скорость) — ведь, по сути, свыше 90% их массы составляет стремительно расходуемое горючее. По самым скромным расчетам, для путешествия на Марс понадобится 900 тонн топлива — и это при том, что масса полезной нагрузки будет примерно в 10 раз меньше. Про ракеты еще говорят — “топливо везет само себя”.

На первый взгляд, космический парус очень медлителен. Да, действительно, начальные этапы его разгона будут напоминать гонки черепах. Однако не следует забывать, что ускорение действует постоянно (для паруса массой 0,8 г/м2 начальное ускорение будет равно 1,2 мм/с2). В условиях безвоздушного пространства это позволит достичь огромных скоростей за весьма короткие сроки.

Теоретически, корабль с космическим парусом способен достичь скорости в100000 км/с и даже выше. Если в 2010 году запустить в космос такой зонд, то (в идеальных условиях) в 2018 он догонит “Вояджер-1”, которому для этого путешествия потребовался 41 год. В настоящее время “Вояджер-1” (запущенный в 1997) находится от нас на расстоянии в 12 световых часов и является самым удаленным от Земли космическим кораблем.

  К сожалению, обсуждение перспектив использования солнечного паруса в космосе не касается одного очень важного вопроса — как будет осуществляться торможение корабля на таких гигантских скоростях? Для межзвездных экспедиций ответ есть — за счет использования солнечного паруса, развернутого в противоположную сторону (однако это существенно увеличит время полета). А как быть с путешествием, допустим, на Марс? Везти с собой ракетное топливо неэффективно, а использование новых типов двигателей (например, разрабатываемых в настоящее время ионных) пока находится под вопросом.

На Марс!

Американские ученые не так давно создали плазменный излучатель High Power Helicon — самый мощный генератор плазмы в мире. Сейчас специалисты NASA всерьез задумываются над перспективами его использования в тандеме с солнечным парусом. Это позволит обеспечить космическому паруснику такой разгон, что полет до Марса займет 45 дней (вместо двух лет на кораблях с обычным ракетным двигателем). По расчетам специалистов, пробный запуск этого устройства в космосе можно будет осуществить уже через пять лет. Предполагаемая стоимость парусника — менее $1 млн.

22 Kb

Иллюстрация с сайта ess.washington.edu

Материя и форма

Материал, из которого сделаны солнечные паруса, должен быть максимально легким и прочным. В настоящее время наиболее перспективными являются полимерные пленки — милар и каптон (толщиной 5 микрон), алюминизированные (тончайший слой металла в 100 нанометров) с одной стороны, что придает им отражающую способность до 90%.

Здесь есть свои сложности. Милар очень дешев и легкодоступен (чуть более толстые пленки имеются в открытой продаже), но непригоден для длительного применения в космосе, так как разрушается под воздействием ультрафиолетового излучения. Каптон более устойчив, однако минимальная толщина такой пленки — 8 микрон, и это уменьшает ходовые качества такого паруса.

Для межзвездных полетов космическому паруснику необходимо набрать невероятную скорость. Для этого ученые предлагают начинать путешествие не с земной орбиты, а с места поближе к Солнцу (например, с орбиты Меркурия). Это позволит значительно увеличить эффективность солнечного паруса, однако потребует для него более прочных, термостойких материалов. Согласно расчетам агентства NASA (США), при таком старте космический “парусник” достигнет Альфы Центавра за 32 года.

    В настоящее время ученые надеются на развитие нанотехнологий — с их помощью можно будет создать легчайший и сверхэффективный солнечный парус из углеродных нанотрубок.

5 Kb

Кусок прочнейшей фиброуглеродной пленки, разработанный в компании «Энергетические научные лаборатории» (Сан Диего). Плотность — 3 грамма на квадратный метр.

Форма (конструкция) парусов имеет едва ли не большее значение, чем материал, из которого они сделаны.

Самый простой и надежный (но более тяжелый, а, следовательно — не слишком быстрый) солнечный парус имеет каркасную конструкцию. Больше всего он напоминает воздушного змея — легкая крестообразная рама является несущей основой для четырех треугольных парусов, надежно закрепленных на ней. Форма каркаса может быть разной — даже круглой. Очевидное преимущество такой конструкции заключается в надежной фиксации парусов — они не смогут свернуться и ими легко управлять (поворачивать под разным углом к свету).

18 Kb 20 Kb

Каркасный солнечный парус.

Существуют проекты парусов, не имеющих каркаса — так называемая “вращающаяся конструкция”. Эти модели выполнены в виде лент, закрепленных на космическом аппарате. Как следует из названия, раскрытие парусов этого типа обеспечивается вращением корабля вокруг своей оси. Центробежные силы (на концах лент закреплен небольшой груз) вытягивают их в разные стороны, позволяя обойтись без тяжелого каркаса. Теоретически, такая конструкция обеспечивает более высокую скорость передвижения в космосе, чем каркасная, за счет своего малого веса.

32 Kb

Модель вращающегося солнечного паруса.

Таковы основные варианты строения солнечного паруса. Предлагаются также и другие модели, например — полотна, свободно парящие в космосе и прикрепленные к кораблю при помощи тросов. Это — своеобразный “гоночный” вариант парусов — при всех их скоростных преимуществах они ненадежны и сложны в управлении.

13 Kb

Свободно парящее полотно космического паруса (рисунок с сайта NASA).

Еще один вариант (хотя некоторые исследователи и склонны выводить его в отдельный класс транспортных средств будущего) — это так называемый “плазменный парус”.

Плазменные паруса будут представлять собой миниатюрную модель магнитного поля Земли. Точно так же, как наше магнитное поле прогибается под напором солнечного ветра, магнитное поле (диаметром 15-20 километров), окружающее космический корабль, будет отступать под давлением заряженных частиц.

Известный американский физик и писатель-фантаст Роберт Лалл Форвард (1932-2002) конкретизировал идеи Цандера и предложил использовать для разгона космического парусника лазер (смонтированный на орбитального базирования). Сегодня также рассматриваются варианты с использованием микроволн.

Что день грядущий нам готовит?

9 августа прошлого года японский институт космонавтики (ISAS) произвел запуск и развертывание двух полноценных солнечных парусов на низких орбитах (122 и 169 км.).

Но страна восходящего солнца не стала первой в области испытаний солнечных парусов. Пальма первенства (с некоторыми оговорками) опять принадлежит России — 4 февраля 1993 года был проведен эксперимент “Знамя-2” с развертыванием 20-метровой тонкопленочной конструкции за счет использования центробежных сил на борту корабля “Прогресс М-15”, пристыкованного к орбитальной станции “Мир”.

Почему это первенство с оговорками? Дело в том, что основной задачей эксперимента было не испытание тяговых качеств этого полотна, а освещение участка земной поверхности отраженным светом — еще одна вполне реальная функция солнечных парусов.

26 октября 1998 года эксперимент был повторен, однако закончился неудачей — полотнище отражателя зацепилось за антенну радиолокатора. Экипажу станции удалось убрать антенну и освободить парус, однако он уже не принял прежней конфигурации.

Диаметр светового пятна на Земле должен был достигнуть 8 км, а освещенность — 5 лунетт (полных лун).

 

На эту весну (предположительные сроки — нынешний месяц) был запланирован кластерный (на одной ракете класса “Днепр”) запуск спутников АКС-1 и АКС-2 компании “Космотранс”. Каждый из них весит около двух килограммов (контейнер 30х30х40 см.) и несет в себе солнечный парус размером с теннисный корт (толщина — 2 микрометра).

На поверхности пленки будут смонтированы позолоченные сенсоры, регистрирующие динамику распределения зарядов по площади паруса над сейсмоопасными районами Земли.

Помимо испытаний ходовых качеств космических парусников, предполагается провести ряд экспериментов по сверхчувствительному зондированию земной поверхности (предсказание землетрясений) и освещению ее пятном света диаметром в пять километров. Спутники будут выведены на 800-километровую орбиту и смогут находиться там на протяжении нескольких столетий.

33 Kb 29 Kb

Рисунок солнечного паруса, который в 1970-х годах предполагалось запустить на встречу с кометой Харли.

Миниатюрная (1 квадратный метр) модель солнечного паруса из милара.

Словом — если посмотреть на состояние дел в области развития космоплавания (Циолковский, кстати, называл космонавтику именно так), то освоение ближайших планет солнечной системы перестает быть научной фантастикой. В настоящее время солнечный парус — самый перспективное устройство для передвижения в космосе, имеющее целый ряд преимуществ перед химическими ракетными двигателями. Кто знает, может быть, через 20-30 лет мы с вами сможем купить билет на космический парусник и полететь в отпуск на Марс?

Как почитать?

“Солнечный ветер”, Артур Кларк — рассказ (и одноименная антология) о гонке космических парусников.

“Мошка в зенице Господней”, Ларри Нивен, Джерри Пурнелл — в книге показан инопланетный корабль, приводимый в движение при помощи солнечного паруса и лазера.

“Мир Роша”, Роберт Лалл Форвард — цикл романов, в котором описывается межзвездное путешествие на солнечном парусе, освещаемом лазером.

“Путь на Амальтею”, “Стажер”, А. Стругацкий, Б. Стругацкий — описан космический грузовик “Тахмасиб”, оснащенный генератором фотонов на термоядерной плазме и 750-метровым отражателем.

6 Kb 13 Kb

«Бумажные солнечные паруса».

13 Kb 22 Kb